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Abstract. We study the partially asymmetric exclusion process with open boundaries. We
generalize the matrix approach previously used to solve the special case of total asymmetry and
derive exact expressions for the partition sum and currents valid for all values of the asymmetry
parameterq. Due to the relationship between the matrix algebra and theq-deformed quantum
harmonic oscillator algebra we find thatq-Hermite polynomials, along with their orthogonality
properties and generating functions, are of great utility. We employ two distinct sets ofq-Hermite
polynomials, one forq < 1 and the other forq > 1. It turns out that these correspond to two
distinct regimes: the previously studied case of forward bias (q < 1) and the regime of reverse
bias (q > 1) where the boundaries support a current opposite in direction to the bulk bias. For the
forward bias case we confirm the previously proposed phase diagram whereas the case of reverse
bias produces a new phase in which the current decreases exponentially with system size.

1. Introduction

The asymmetric simple exclusion process (ASEP) [1] is a much studied model from both
mathematical and physical viewpoints. The model comprises particles hopping in a preferred
direction on a lattice with hard-core exclusion imposed. In the mathematical literature the
interest lies in it being a simple realization of interacting Markov processes [2] and much
progress has been made in proving existence theorems, invariant measures and hydrodynamic
limits [1]. Early applications concerned biophysical problems such as single-filing constraint
in transport across membranes [3] and the kinetics of biopolymerization [4]. More recently
the ASEP has achieved the status of a fundamental non-equilibrium model due to its intimate
relation to growth phenomena and the KPZ equation [5], the problem of directed polymers
in a random media [6] and its use as a microscopic model for driven diffusive systems [7]
and shock formation [8]. Last but not least, many traffic flow models are based on variants
of the ASEP [9]. Adding to its appeal is the fact that many exact results have been obtained,
particularly in one dimension, allowing an analytical understanding of the non-equilibrium
phenomena exhibited [10].

‖ Present address: Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13
9PL, UK.
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In recent years the open boundary problem, where particles attempt to enter at the left of
a one-dimensional lattice ofN sites with rateα, hop to the right under a hard-core exclusion
constraint and exit at the right with rateβ, has been of considerable interest. It was first pointed
out by Krug that boundary-induced phase transitions can occur [11] and it has further been
shown that spontaneous symmetry breaking takes place when two oppositely moving particle
species are introduced [12].

The door was opened to the analytical study of the open boundary model and its non-
equilibrium steady state in [13]. There, exact recursion relations on the steady-state weights
were obtained and density profiles and currents were worked out exactly for the caseα = β = 1.
Also a mean field phase diagram in theα–β plane was derived. Then the recursion relations
were used to calculate correlation functions for the caseα = β = 1 [14]. In [15] a different
method, to be referred to as the matrix approach, was proposed: it was shown that the
steady-state weights can written as a product of matrices which are in general of infinite
dimension and non-commuting. The matrices obey algebraic rules which replace the recursion
relations found in [13]. This approach gives the full solution of the model including the phase
diagram and density profiles and allows, in principle, calculation of all equal time correlation
functions. Further it admits generalization to other models. It should be noted that the phase
diagram and density profiles were also obtained independently working from the recursion
relations [16]. Subsequently the matrix approach has been used to solve new models with
several species [17–20] and various updating schemes [21–23], to calculate shock profiles on
an infinite system [24] and to recover some previously known results [25].

The phase diagram obtained for the one-species open boundary case [13,15,16] comprises
three phases: a low-density phase, a high-density phase and a maximal current phase where
generic long-range correlations occur. This phase diagram appears quite robust for driven
diffusive systems with open boundaries [26]. Also it has been shown that different types of
updates the same generic phase diagram pertains, except in simple cases of deterministic bulk
dynamics where the maximal current phase is absent [27,28].

The partially asymmetric exclusion process is a generalization of the model where particles
are able to hop to the left as well as to the right. The case of partial asymmetry is of interest since
it allows one to interpolate between symmetric exclusion which can have equilibrium steady
states and the far-from equilibrium asymmetric system. In the context of growth phenomena the
two different systems are described by Edwards–Wilkinson and KPZ universality classes [11]
and the crossover phenomena has been of interest [29,30].

A parameterq gives the ratio of hopping rates to the left and to the right; thusq = 0 recovers
the totally asymmetric process andq = 1 gives the fully symmetric case. Furthermore, in the
range 0< q < 1 there exists what we shall refer to as theforward biasregime where particles
hop preferentially to the right and the boundary conditions are such that a steady-state current
of particles to the right is supported. In contrast, whenq > 1 particles can only enter at the
left and leave at the right but hop preferentially to the left in the bulk. A steady-state current
of particles to the right can then be supported by the boundary conditionsagainst the bulk
bias. This gives rise to a new phase which we analyse for the first time here. We show that the
current decreases exponentially with the length of the system. This phase is of interest in the
context of ‘backbend dynamics’ [31, 32] where, for example, a fluid in a permeable medium
has to traverse a pore oriented against the direction of gravity. It also appears that such a
reverse bias phase is relevant to recently reported one-dimensional phase separation [19,33].

In [15] the generalization of the matrix approach to the partially asymmetric exclusion
process was pointed out. This was used in [34] to obtain approximate expressions for the
current in the forward bias case for large system size. It was also pointed out that the matrices
for the partially asymmetric case are closely related to creation and annihilation operators of
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theq-deformed harmonic oscillator. In [35] the quadratic algebra was studied and curves in
the parameter space were deduced for which finite matrices could be used. Along these curves
exact expressions for physical quantities, such as the current and correlation length, can be
computed easily. Also, in the symmetric caseq = 1 the steady state is straightforward to
solve [36–38]. However, exact expressions for all system sizes and parameters have remained
elusive.

In this work we build on the relationship of the quadratic algebra with theq-deformed
harmonic oscillator algebra to calculate exact expressions for the current for all system sizes
and parameter values. The basic approach is to use known properties, such as orthogonality and
generating functions, of theq-deformed Hermite polynomials associated with the quadratic
algebra.

This method was employed independently by [39] to study the case of forward bias
(q < 1) and a phase diagram for this regime was obtained by examining the asymptotics of the
normalization (partition sum). We have been able to consider for the first time the caseq > 1
for which a less well known set ofq-Hermite polynomials is required [40]. Furthermore we
obtain as a main new result of our work an exact, explicit expression for the normalization
valid for all q which encompasses all regimes:q = 0 (total asymmetry),q < 1 (forward
bias),q = 1 (symmetric) andq > 1 (reverse bias). This exact expression allows all physical
quantities of the model to be evaluated for any system size and we use it here to obtain the
asymptotic form of the current in the reverse bias regime.

The paper is organized as follows: in section 2 we define the model we consider and
in section 3 we review the matrix approach and the related quadratic algebra. In section 4
we discuss theq-deformed harmonic oscillator and its relation to the quadratic algebra of the
present problem. In particular, we present relevant facts such as the generating functions and
orthogonality relations for theq-Hermite polynomials. In section 5 we derive our main results,
which are exact expressions for the normalization (partition sum). In section 5.1 we derive an
integral expression valid forq < 1 (41) and in section 5.2 we derive an integral expression
valid for q > 1 (43). We then obtain in section 5.3 a finite sum expression valid for allq (57).
In section 6 we use the exact expressions to calculate the asymptotic behaviour of the current
and the phase diagram. We conclude in section 7 with a discussion.

2. Model definition

The microscopic dynamics of the model are specified by four rates at which certain events can
occur. For a rateλ associated with a particular event, the probability that the event happens in
an infinitesimal time interval dt is λdt . Furthermore, moves that would lead to two particles
simultaneously occupying a single lattice site are prohibited due to the hard-core repulsion
between them.

The events defined in the model and the rates at which they take place are as follows.
Event Rate
Particle inserted onto the left boundary site α

Particle removed from the right boundary site β
Particle hops by one site to the right 1
Particle hops by one site to the left q

Figure 1 shows a typical particle configuration on a small lattice along with the allowed
moves and their rates.

As only three of the rates are independent, we have set the right hopping rate to 1 with no
loss of generality in the following analysis.
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Figure 1. A typical particle configuration and allowed moves in the model.

Later, in section 7, we will consider a more general parameter space where particles can
also enter at the right and exit at the left.

3. The matrix product formulation and its quadratic algebra

In this section we review the matrix approach to finding the steady state of the model. We
present here the bare essentials of the method and refer the reader elsewhere for more detailed
descriptions of the technique [10,15,41].

Consider first a configuration of particlesC and its steady-state probabilityP(C). We use
as an ansatz forP(C) an ordered product of matricesX1X2 . . . XN whereXi = D if site i is
occupied andXi = E if it is empty. To obtain a probability (a scalar value) from this matrix
product, we employ two vectors〈W | and|V 〉 in the following way:

P(C) = 〈W |X1X2 . . . XN |V 〉
ZN

. (1)

The factorZN is included to ensure thatP(C) is properly normalized. This latter quantity,
analogous to a partition function, has the following simple matrix expression through which a
new matrixC is defined:

ZN = 〈W |(D +E)N |V 〉 = 〈W |CN |V 〉. (2)

Note that ifD andE do not commuteP(C) is a function of both the number and position
of particles on the lattice, as expected for a non-trivial steady state. The algebraic properties
of the matrices can be deduced from the master equation for the process [15]. It can be shown
that sufficient conditions for equation (1) to hold are

DE − qED = D +E (3)

α〈W |E = 〈W | (4)

βD|V 〉 = |V 〉. (5)

One can also write expressions for ensemble-averaged quantities in terms of matrix
products. For example the current of particlesJ through the bond between sitesi andi + 1 is
given by

J = 〈W |C
i−1(DE − qED)CN−i−1|V 〉

ZN
= ZN−1

ZN
(6)

where the last equality follows from relation (3). We see that, as expected in the steady state,
the current is independent of the bond chosen. Also, the mean occupation number (density)
of sitei may be written as

τi = 〈W |C
i−1DCN−i |V 〉
ZN

. (7)

Our task now is to evaluate the matrix products in the above expressions forZN, J andτi by
applying the rules (3)–(5).
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In [15] the caseq = 0 was treated by using (3) repeatedly to ‘normal-order’ matrix
products: that is, to obtain an equivalent sum of products in which allE matrices appear to
the left of anyD matrices. Then finding a scalar value from (4) and (5) is straightforward. For
example one can develop (2) as

ZN = 〈W |CN |V 〉 =
∑
n,m

aN,n,m〈W |EnDm|V 〉 = 〈W |V 〉
∑
n,m

aN,n,mα
−nβ−m. (8)

The difficulty with this approach lies in the combinatorial problem of finding the
coefficientsaN,n,m. An alternative approach proposed in [15] is to find an explicit representation
of C and decompose the vectors〈W | and |V 〉 onto the eigenbasis ofC to evaluate the
normalization.

In the present work we employ mainly the latter approach to derive an expression for the
normalization which is valid over a restricted range of the model parameters. We will later
compare this with the canonical form (8) to find an expression which does not depend on the
chosen representation and is therefore generally valid. The representation ofC that we use
is intimately related to theq-oscillator algebra and the eigenbasis ofC is constructed from
q-Hermite polynomials.

4. Theq-deformed harmonic oscillator and its relevance

Much progress can be made if the algebra of the previous section is written in terms of that of
q-deformed quantum harmonic oscillator [42]. The relationship central to this algebra is the
q-deformed commutator

ââ†− qâ†â = 1I (9)

where the operatorŝa andâ† operate on basis vectors|n〉 (with n = 0, 1, 2, . . .) as follows:

â†|n〉 =
(

1− qn+1

1− q
)1

2

|n + 1〉 (10)

â|n〉 =
(

1− qn
1− q

)1
2

|n− 1〉 (11)

â|0〉 = 0. (12)

In terms of these new operators, the matrices introduced in the previous section can be
written as

D = 1

1− q +
1√

1− q â (13)

E = 1

1− q +
1√

1− q â
† (14)

and one finds using (9) that (3) is satisfied.
We now have an explicit representation of the originalD andE matrices in the oscillator’s

‘energy’ eigenbasis{|n〉}. Thus one may combine equations (13), (11) and (5) to find the
corresponding representation of the vector|V 〉:

〈n|V 〉 = vn∏n
j=1

√
(1− qj ) (15)

where we have set〈0|V 〉 = 1 andv is the following combination of the model parameters:

v = 1− q
β
− 1. (16)
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The denominator of (15) is more conveniently written in terms of a ‘q-shifted factorial’.
This is defined through

(a; q)n =
n−1∏
j=0

(1− aqj ) (17)

(a; q)0 = 1. (18)

We will later encounter products of these factorials for which we shall use the shorthand
notation employed by [43]:

(a, b, c, . . . ; q)n = (a; q)n(b; q)n(c; q)n . . . . (19)

We can now use this compact notation to write expressions for both〈n|V 〉 and〈W |n〉, the
route to the latter being the same as that to find〈n|V 〉:

〈n|V 〉 = vn√
(q; q)n

(20)

〈W |n〉 = wn√
(q; q)n

(21)

wherev is given by (16) and

w = 1− q
α
− 1. (22)

We see that the representation ofD andE (13) and (14) breaks down for certain choices
of the model parameters. Firstly, forq = 1 (symmetric exclusion) a number of singularities
appear. Secondly, ifv > 1 andq < 1, the vector element〈n|V 〉 (20) is unbounded from above
asn→∞; similarly with 〈W |n〉 (21) whenw > 1 andq < 1. We consider for the moment
only those regions of parameter space where this representation converges, and discuss the
generalization to the remaining areas in section 5.3.

We persevere with the relationship between the original quadratic algebra and theq-
oscillator algebra for the reason we now explain. We introduced earlier a matrixC which
appears in the expressions for the mean particle density and current. We now see that this
matrix can be written as a linear combination of the identity 1I and the ‘coordinate’ operator
x̂ = â + â†:

C = D +E = 2

1− q 1I +
1√

1− q x̂. (23)

The eigenstates of the oscillator in the coordinate representation are known—in analogy
with the solutions of the undeformed oscillator they are called the continuousq-Hermite
polynomials [43]. Clearly, the eigenvectors ofC are the same as those forx̂ and therefore
knowledge of them permits diagonalization ofC. As this is a major step towards obtaining
the exact solution of the model, it is worth spending a little time discussing theq-Hermite
polynomials.

The recursion relation for the polynomials follows after a suitable definition of the operator
x̂ on its eigenbasis{|x〉}:

x̂|x〉 = 2x√
1− q |x〉. (24)

From this and equations (11) and (10) we find

2x〈x|n〉 =
√

1− qn〈x|n− 1〉 +
√

1− qn+1〈x|n + 1〉. (25)
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Explicit formulae for〈x|n〉 can be found using a generating function technique, the details of
which differ slightly depending on whetherq < 1 orq > 1. Here we present the results which
will be most useful later; derivations are given in appendix A.

Whenq < 1 we make a change of variable

x = cosθ. (26)

Theq-Hermite polynomials can now be defined as〈θ |n〉, that is, the projection of the oscillator
energy eigenstate|n〉 onto the position basis〈θ |. The generating function

G(θ, λ) =
∞∑
n=0

λn√
(q; q)n

〈θ |n〉 (27)

can be expressed as an infinite product

G(θ, λ) = 1

(λeiθ , λe−iθ ; q)∞ (28)

when|λ| < 1. An explicit form of theq-Hermite polynomial〈θ |n〉 can be determined from the
generating function and is presented in appendix A, equation (A.6). It can also be shown [43]
that the set ofq-Hermite polynomials are orthogonal with respect to a weight functionν(θ).
That is ∫ π

0
dθ〈n|θ〉ν(θ)〈θ |m〉 = δn,m (29)

where

ν(θ) = (q, e2iθ , e−2iθ ; q)∞
2π

. (30)

Similar results emerge whenq > 1 under a different change of variable

x = i sinhu (31)

with a suitably redefined generating function valid for allλ:

G(u, λ) =
∞∑
n=0

λn√
(q; q)n

〈u|n〉 = (iq−1λeu,−iq−1λe−u; q−1)∞. (32)

An explicit expression for〈u|n〉 is given in (A.10). Again a weight functionν(u) that
orthogonalizes the polynomials can be found [40]. We write∫ ∞

−∞
du〈n|u〉ν(u)〈u|m〉 = δn,m (33)

where now

ν(u) = 1

ln q

1

(q−1,−q−1e2u,−q−1e−2u; q−1)∞
. (34)

5. Exact expressions for the normalizationZN

5.1. Integral representation forq < 1

The relationships in the previous section allow us to obtain integral representations of matrix
products. Here we illustrate how to apply the procedure to obtain an expression for the
normalizationZN whenq < 1. The procedure used to obtain this particular result is also
described by [39]; in the next section we extend the method to the caseq > 1.
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First we take the orthogonality relation for theq-Hermite polynomials (29) and use it to
form a representation of the identity matrix:∫ π

0
dθ |θ〉ν(θ)〈θ | = 1I. (35)

We now insert this into the expression for the normalization (2):

ZN =
∫ π

0
dθ ν(θ)〈W |CN |θ〉〈θ |V 〉. (36)

By design, the matrixC is acting on its eigenvectors, so using (23) and (26) we obtain

ZN =
∫ π

0
dθ ν(θ)〈W |θ〉

(
2(cosθ + 1)

1− q
)N
〈θ |V 〉. (37)

It is necessary to decompose the boundary vectors〈W | and|V 〉 onto the{|θ〉} basis. By
inserting a complete set of the basis vectors{|n〉} we find

〈θ |V 〉 =
∞∑
n=0

〈θ |n〉〈n|V 〉 =
∞∑
n=0

vn√
(q; q)n

〈θ |n〉. (38)

The final sum in this equation is just the generating function of theq-Hermite polynomials (27).
Thus, when|v| < 1, we may write

〈θ |V 〉 = G(θ, v) = 1

(veiθ , ve−iθ ; q)∞ . (39)

Similarly, when|w| < 1 we find

〈W |θ〉 = G(θ,w) = 1

(weiθ , we−iθ ; q)∞ . (40)

Putting all this together, we arrive at an exact integral form for the normalization

ZN =
(

1

1− q
)N ∫ π

0
dθ ν(θ)[2(1 + cosθ)]NG(θ,w)G(θ, v) (41)

which, written out more fully, reads

ZN = (q; q)∞
2π

(
1

1− q
)N ∫ π

0
dθ [2(1 + cosθ)]N

(e2iθ , e−2iθ ; q)∞
(veiθ , ve−iθ , weiθ , we−iθ ; q)∞ . (42)

When |v| > 1 or |w| > 1 equation (41) is not well-defined becauseG(θ, λ) does not
converge when|λ| > 1. Rather than finding a representation of the quadratic algebra that does
not suffer from this problem, one can simply analytically continue the integral (42) to obtain
ZN when|v| or |w| takes on a value greater than one. This procedure is carried out in section 6.

5.2. Integral representation forq > 1

We now apply the procedure of the previous section to find an integral representation of the
normalization for the case ofq > 1 which has not previously been considered. The only
difference is that we must use theq > 1 forms of the generating function and weight function
of theq-Hermite polynomials, namely equations (32)–(34). We obtain a similar form forZN

to (41):

ZN =
(

1

1− q
)N ∫ ∞

−∞
du ν(u)[2(1 + i sinhu)]NG(u,w)G(u, v). (43)
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However, the full form is somewhat different from (42):

ZN = 1

ln q

1

(q−1; q−1)∞

(
2

1− q
)N ∫ ∞

−∞
du(1 + i sinhu)N

× (iq
−1veu,−iq−1ve−u, iq−1weu,−iq−1we−u; q−1)∞

(−q−1e2u,−q−1e−2u; q−1)∞
. (44)

One should note the range of integration is infinite and that, in contrast to equation (42), it
cannot be simply replaced by a closed contour in the complex plane. It is this feature which
makes this integral unsuited to approximation using the saddle-point method as we discuss in
section 6.2.

5.3. Explicit formula

In this section we derive an alternative expression forZN which takes the form of a finite
sum rather than an integral and is valid for all values of the model parameters. Such an
expression is useful for two main reasons: firstly it allows us to extract the asymptotic form of
the normalization whenq > 1; secondly, as the sum contains a finite number of terms, it can
be evaluated exactly by numerical means if one wishes to study finite-sized systems.

We will work from the integral forq < 1, |v| < 1 and|w| < 1 (41). The first stage of the
calculation is to state an important identity:∫ π

0
dθ ν(θ)G(θ, λ)G(θ, v)G(θ,w) = 1

(vw, λv, λw; q)∞ . (45)

We do not prove this here but note that it is in fact a special case of the Askey–Wilsonq-beta
integral [43]†.

We now expand both sides of (45) in powers ofλ. We already know the expansion of
the left-hand side becauseG(θ, λ) is the generating function of theq-Hermite polynomials.
The right-hand side may be treated by using another important identity valid when|x| < 1,
q < 1 [43]:

∞∑
n=0

xn

(q; q)n =
1

(x; q)∞ . (46)

We find

1

(λv, λw; q)∞ =
∞∑
n=0

λn

(q; q)n
n∑
k=0

[
n

k

]
q

vn−kwk (47)

where we have used theq-binomial coefficient which is[
n

k

]
q

= (q; q)n
(q; q)n−k(q; q)k (48)

when 06 k 6 n and zero otherwise. In the limitq → 1 theq-binomial coefficient is equal to
the conventional version

(
n

k

)
familiar from combinatorics. Thus the last summation in (47) may

be considered aq-deformation of the binomial expansion of(v +w)n. We give this function
the symbolBn(v,w; q):

Bn(v,w; q) =
n∑
k=0

[
n

k

]
q

vn−kwk. (49)

† In its most general form the Askey–Wilsonq-beta integral has four parameters, whereas identity (45) has only
three.
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If we now compare coefficients of powers ofλ on both sides of (45) we obtain a key result:∫ π

0
dθ ν(θ)〈θ |n〉G(θ, v)G(θ,w) = 1

(vw; q)∞
Bn(v,w; q)√
(q; q)n

. (50)

This relationship is important because we may take any sufficiently well-behaved function
f (θ), re-express it it as a sum ofq-Hermite polynomials and use (50) to evaluate the integral∫ π

0
dθ ν(θ)f (θ)G(θ, v)G(θ,w). (51)

Specifically, we can choosef (θ) = [2(1 + cosθ)]N and solve equation (41) exactly.
Expanding the cosine function in this way involves little more than routine algebra which

is detailed in appendix B. The identity which emerges is

[2(1 + cosθ)]N =
N∑
n=0

RN,n(q)
√
(q; q)n〈θ |n〉 (52)

with

RN,n(q) =
b N−n2 c∑
k=0

(−1)k
(

2N

N − n− 2k

)
q(

k

2)

{[
n + k − 1
k − 1

]
q

+ qk
[
n + k
k

]
q

}
(53)

which may be alternatively written as

RN,n(q) =
b N−n2 c∑
k=0

(−1)k
[(

2N

N − n− 2k

)
−
(

2N

N − n− 2k − 2

)]
q(

k+1
2 )
[
n + k
k

]
q

.

(54)

We may now insert the expansion (52) into (41) and integrate using (50):

ZN = 1

(vw; q)∞

(
1

1− q
)N N∑

n=0

RN,n(q)Bn(v,w; q). (55)

This exact formula, valid forq < 1, |v| < 1 and|w| < 1 admits extension to generalq,
v andw. We first note that the infinite product in the prefactor can be replaced with〈W |V 〉, a
fact which follows from (46):

1

(vw; q)∞ =
∞∑
n=0

(vw)n

(q; q)n = 〈W |V 〉. (56)

We claim that the resulting expression for the normalization

ZN = 〈W |V 〉
(

1

1− q
)N N∑

n=0

RN,n(q)Bn(v,w; q) (57)

whereRN,n(q) is given by (53) andBn(v,w; q) by (49), holds forall choices of the model
parameters.

This is justified by observing that oncev andw are written in terms ofα andβ using (16)
and (22) we obtain a power series inα andβ of the same form as (8). As discussed in section 3,
an equation with this structure arises when one reorders a matrix product directly using the
relation (3). To perform this direct manipulation, it is not necessary to employ a specific
representation of the quadratic algebra. Therefore, although the representation we used to
derive (57) breaks down forq = 1, q < 1, |v| > 1 or q < 1, |w| > 1, we can now say
that had we used one which converges in the region of interest, we would still have obtained
equation (57) for the normalization.



Exact solution of a partially asymmetric exclusion model 2323

As a check of this formula, let us consider the caseq = 0. Then (54) and (49) become

RN,n(0) =
(

2N

N − n
)
−
(

2N

N − n− 2

)
(58)

Bn(v,w; 0) = vn+1− wn+1

v − w (59)

where nowv = 1/β − 1 andw = 1/α − 1. It can be verified, using the identity

X−Y∑
n=r

(−1)n
(

X

Y − n
)(
n

r

)
= (−1)r

(
X − 1− r
Y − r

)
(60)

that (57) can be rewritten as

ZN = 〈W |V 〉
N∑
k=0

[(
2N − 2− k
N − k

)
−
(

2N − 2− k
N − 2− k

)][
(1/β)k+1− (1/α)k+1

1/β − 1/α

]
(61)

which is equivalent to equation (39) of [15].
We note that forq → 1 the singularity in the denominator of (57) is cancelled by the

sum overRN,n(q)Bn(v,w; q) and the expression is in fact well behaved. Although we have
checked for small system sizes that (57) agrees with the expression of [37] we have not been
able to show this in a simple way.

6. The phase diagram of the model

We now have enough information to obtain an exact phase diagram for the model and
expressions for the particle current in the large system size limit. The behaviour differs greatly
according to whether the particles are forward biased (q < 1) or reverse biased (q > 1) and
so we treat the two cases separately.

6.1. The forward bias regime

Whenq < 1, the quantities of interest are most quickly obtained from the integral (42) as was
also done in [39]. AsN becomes large, we can use the saddle-point method to evaluateZN,
and so we rewrite (42) as a contour integral

ZN = (q; q)∞
4π i

(
1

1− q
)N ∮

K

dz

z
(2 + z + z−1)N

(z2, z−2; q)∞
(vz,wz, vz−1, wz−1; q)∞ (62)

where the contourK is the circle|z| = 1 and is directed anti-clockwise. Furthermore it passes
through the saddle-point of 2 +z + 1/z along the path of steepest descent. We find from the
saddle-point formula that

ZN ∼ 4√
π

(q; q)3∞
(v,w; q)2∞

(
1

N

)3
2
(

4

1− q
)N

(63)

which holds as long as|v| < 1 and|w| < 1.
We can treat other values ofv andw using the integral (62) after realizing that (63) gives the

contribution from the contourK for any value ofv andw, whereas the analytic continuation
of ZN is obtained by distorting the contour such that the poles atz = v, qv, q2v, . . . and
z = w, qw, q2w, . . . stay inside it and all other poles are outside it. Figure 2 illustrates how
to modify the contour asv is increased to a value 1< v < 1/q.
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Figure 2. The integral over the contourK (shown dotted in the right-hand figure) can be determined
from a saddle-point expansion, whereas the distorted contourK ′ is the correct one to use when
1< v < 1/q. Note that only the four poles closest toz = 1 have been shown for clarity.

Table 1. The normalization for different values ofv andw whenq < 1.

Region NormalizationZN

v < 1,w < 1
4√
π

(q; q)3∞
(v,w; q)2∞

(
1

N

)3
2
(

4

1− q
)N

v > w, v > 1
(v−2; q)∞

(vw,w/v; q)∞

(
2 +v + v−1

1− q
)N

w > v, w > 1
(w−2; q)∞

(wv, v/w; q)∞

(
2 +w +w−1

1− q
)N

The difference between the two results can be calculated using the residue theorem. When
|w| < 1, 1< v < 1/q we find by looking at the poles atz = v andz = 1/v that we should
add

(v−2; q)∞
(vw,w/v; q)∞

(
2 +v + v−1

1− q
)N

(64)

to (63). In the large-N limit, this correction dominates the contribution from the contourK

and so we write

ZN ∼ (v−2; q)∞
(vw,w/v; q)∞

(
2 +v + v−1

1− q
)N

(65)

when |w| < 1 and 1< v < 1/q. As v is increased above 1/q and other poles need to be
considered, (64) remains the dominant contribution toZN. One could guess this from the fact
that the pole atz = v is furthest from the origin.

Due to the symmetry of (62) inv andw, we obtain (65) withv ↔ w whenw > 1, |v| < 1.
When bothw andv are greater than one, the leading term in the asymptotic expansion comes,
as before, from the pole furthest along the real axis of the complex plane. Thus we have found
three different forms forZN, each of which corresponds to a phase in the model. These forms
and their regions of validity are presented in table 1.

We can go on to find the currents in the three forward bias phases through equation (6).
These expressions are presented in table 2. For completeness we should determineZN along
each of the phase boundaries (v = w > 1 or v = 1, w 6= 1 etc). We find that the currents
subsequently found are equal to the limiting values of those in table 2 as the boundary under
consideration is approached from each of the neighbouring regions.

We can now draw a phase diagram for the system whenq < 1: see figure 3. We note
that it has the same structure as that found forq = 0 [15]. The region|v| < 1, |w| < 1 is
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Table 2. TheN →∞ forms of the particle current in the forward biased phases.

Region CurrentJ

α >
1− q

2
, β >

1− q
2

1− q
4

α <
1− q

2
, β > α

α(1− q − α)
1− q

β <
1− q

2
, α > β

β(1− q − β)
1− q

Figure 3. The phase diagram of the model whenq < 1. The thick solid line is
a first-order transition and the thin solid lines are second-order transitions in the
sense of [15,16].

a maximal current phase; the remaining two phases correspond to the high- and low-density
phases found by [15]. Each of these two latter phases may be subdivided into three regions
according to the behaviour of the density correlation length in the thermodynamic limit [39].

6.2. The reverse bias regime

We turn now to the caseq > 1. We will show shortly by examining the exact formula (57)
that the normalization behaves likeZN ∼ q 1

4N
2

for largeN . This sheds further light on why
the saddle-point method is not applicable here: by its nature, it gives expressions where the
exponent is linear inN rather than the desired quadratic.

To proceed we must find approximate forms of two elementary quantities: theq-shifted
factorial and theq-binomial coefficient. We rewrite the definition (17) as

(q; q)n = (−1)nq(
n+1
2 )eMn(q) (66)

where

Mn(q) = −
∞∑
k=1

1

k

1

qk − 1
(1− q−kn). (67)

We see that whenn is large,Mn(q) can be approximated by

M(q) ' −
∞∑
k=1

1

k

1

qk − 1
(68)

which is independent ofn. This leads to an approximation of theq-binomial coefficient[
n

k

]
q

' qk(n−k)e−M(q) (69)

which is valid when bothn and k are large. The rest of the analysis is not particularly
illuminating, so is presented in appendix C. We ultimately find that whenq > 1

ZN ∼ A(v,w; q)(q−1vw, 1/vw; q−1)∞

(√
vw

q − 1

)N
q

1
4N

2
(70)
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where

A(v,w; q) =
√
π

ln q
exp

{
M(q) +

(lnw/v)2

4 lnq

}
. (71)

We should note that the smallest system sizeN for which (70) holds will be a function ofq
due to difference between the exact quantityMn(q) and the approximate form we usedM(q).

The expression for the current follows quickly from (6). This reads

J ∼
(

αβ(q − 1)2

(q − 1 +α)(q − 1 +β)

)1
2

q−
1
2N+ 1

4 (72)

which, in contrast with the currents in the forward bias regime, is a function of the number of
lattice sitesN .

7. Discussion

In this work we have employed properties ofq-Hermite polynomials to calculate exact steady-
state properties of the partially asymmetric exclusion process. The connection between this
model andq-Hermite polynomials lies in the fact that the matricesD andE of the matrix
product solution can be written in terms ofq-raising andq-lowering operators as in (13). Then
the calculation of the normalization (2) amounts to decomposing the vectors〈W | and|V 〉 onto
the eigenvectors of the matrixC which are the eigenvectors of the ‘coordinate’ operator of the
q-deformed oscillator. This allowed us to obtain integral representations of the normalization
for both the forward bias caseq < 1 (41) and the reverse bias caseq > 1 (43). Further we
could use orthogonality properties of theq-Hermite polynomials to express these two integral
expressions as a finite sum valid for allq (57).

In a very recent paper [39], orthogonal polynomials were also used to study the ASEP.
In view of the fact that our work and [39] were carried out independently, a comparison is in
order. In [39], the large system size limits of the normalization and the current in the forward
bias regimeq < 1 via the integral representation (41) were obtained. Furthermore it was
shown that one could also analyse the density correlations from this integral. In this work
we have found that a corresponding integral can also be found for the case of reverse bias
q > 1. Further for all values ofq (andα, β) we have succeeded in obtaining an exact sum
formula valid for all system sizes. One application of this general expression was to calculate
the current in the reverse bias phase.

For the forward bias case the phase diagram proposed by Sandow [34] is recovered. In that
work the more general parameter space including ratesγ (exit of particles at the left boundary)
andδ (entry at the right) was considered. For this case the algebra is modified [15] to

DE − qED = D +E (73)

〈W |(αE − γD) = 〈W | (74)

(βD − δE)|V 〉 = |V 〉. (75)

In principle we can generalize our method to that case, the only difference being that〈W | and
|V 〉 specified by (4) and (5) will have more complicated expressions than (20) and (21). In the
forward bias case the generalization would not produce any new phases. However, forq > 1
allowing particles to exit at the left and enter at the right (bothγ, δ > 0) would allow a left
flowing current of particles to be sustained, thus destroying the reverse bias phase.

The reverse bias phase where the boundary conditions impose a current opposite to the
bulk bias realizes a new phase in the ASEP where the current decreases exponentially with
system size. A typical arrangement of particles in this phase is a lattice full at the left end
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and empty at the right end. The form for the currentj ∼ q−N/2 (72) suggests that the lattice
is typically half full, i.e. the furthest particle to the right has typically to traverse a distance
of N/2 sites against the bias to exit the lattice. To understand why the lattice is half full one
invokes the particle hole symmetry that the current of particles exiting to the right must equal
the current of holes exiting to the left. The symmetry implies that the lattice must be half
full [31].

Further, for largeN the current tends to zero and one can compare with the much simpler
case where the current is exactly zero, for example when the boundaries are reflecting [44].
Then the microscopic dynamics obey detailed balance and the unnormalized probability of a
configuration ofM particles at positionsx1, x2, . . . , xM will be proportional toq−

∑M
i=1 xi . Here

also the normalization grows exponentially inN2 [33].
In a recent preprint [45] the density profiles for the three forward biasq < 1 phases

were calculated in the thermodynamic limit. In particular in the maximal current phase it was
shown that the density profile decays with distancex from the left boundary as12 + (4πx)−1/2

for largex. There remain, however, a number of issues to be resolved. Asq tends to 1 the
maximal current phase occupies more and more of the phase diagram—see figure 3. However,
atq = 1 we know that the profile is exactly linear. This implies a non-trivial limitq → 1 and
therefore non-trivial crossover phenomena from the asymmetric to the symmetric case. This
corresponds to the transition between KPZ and EW universality classes in the related growth
models. Further in the reverse bias case (q > 1), as we expect the lattice to be roughly half
full, the density profile should be sigmoid-like. Forq → ∞ the profile will be a sharp step
function whereas asq → 1 the sigmoid profile will straighten out into a linear profile.

It is known that the quadratic algebra (3)–(5) for the open boundary problem can be used
to solve a partially asymmetric periodic system with the addition of defect particles [10, 17].
A defect particle hops forward with rateα but is overtaken (and moved back a site) by normal
particles with rateβ. Whenq < 1, the different phases in the present problem manifest
themselves in this model [46]. However the caseq > 1 is yet to be tackled; we believe this
to be of special interest as the reverse bias phase corresponds to phase separation into pure
domains and spontaneous breaking of translational invariance [19,33].
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Appendix A. Generating functions of theq-Hermite polynomials

In this appendix we explain how to obtain the generating functionsG(θ, λ) andG(u, λ) from
the recursion relations for theq-Hermite polynomials (25). We also present explicit expressions
for the polynomials as they may be obtained easily from the generating functions.

We consider first a general form ofG, suitable for bothq < 1 andq > 1:

G(x, λ) =
∞∑
n=0

λn√
(q; q)n

〈x|n〉. (A.1)

We now obtain a functional relation forG(x, λ) by multiplying both sides of equation (25) by
λn/(
√
(q; q)n) and performing the required summations:

G(x, qλ) = (λ2 − 2λx + 1)G(x, λ). (A.2)
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By using this relation repeatedly, we can find an expression forG(x, λ) in terms ofG(x, 0).
This latter quantity is fixed by normalization, and so we set it to 1.

It can be seen from (A.2) that our approach fromG(x, λ) toG(x, 0) depends on whether
q < 1 or q > 1. Consider first the caseq < 1. It is useful to make the change of variable
x = cosθ so that (A.2) becomes

G(θ, λ) = G(θ, qλ)

(1− λeiθ )(1− λe−iθ )
. (A.3)

Iterating this we find

G(θ, λ) = 1

(λeiθ , λe−iθ ; q)∞ (A.4)

where we have usedG(θ, 0) = 1. The infinite product 1/(x; q)∞ has a well known series
representation [43] valid forx < 1, q < 1

1

(x; q)∞ =
∞∑
n=0

xn

(q; q)n (A.5)

from which we may extract the form of〈θ |n〉. Expanding both sides of (A.4) inλand comparing
coefficients we find

〈θ |n〉 = 1√
(q; q)n

n∑
k=0

[
n

k

]
q

ei(n−2k)θ (A.6)

where
[
n

k

]
q

is theq-deformed binomial described in section 5.3.
The caseq > 1 proceeds in the same way. We must however make a different change

of variablex = i sinhu because otherwise (24) would imply that we had found imaginary
eigenvalues of a Hermitian matrix. Also we should divideλ by q in as we approachG(u, 0)
fromG(u, λ). We thus rewrite (A.2) as

G(u, λ) = (1− iq−1λeu)(1 + iq−1λe−u)G(u, q−1λ) (A.7)

and iterate before to obtain

G(u, λ) = (iq−1λeu,−iq−1λe−u; q−1)∞. (A.8)

Again the infinite product on the right-hand side of this equation has a useful series expansion
appropriate forq > 1 and allx:

(q−1x; q−1)∞ =
∞∑
n=0

xn

(q; q)n . (A.9)

Expansion of (A.8) in powers ofλ and comparison with the generating function (32) yields
〈u|n〉:

〈u|n〉 = in√
(q; q)n

n∑
k=0

(−1)k
[
n

k

]
q

e(n−2k)u. (A.10)

It is important to realize that the two forms (A.6) and (A.10) we have found are not very
different. In particular one can obtain the form (A.10) by making the substitutionθ → π/2−iu
which is another way of describing the replacement cosθ → i sinhu. Also we should note
that all the functions we have found are real on their domains despite the presence of i when
q > 1.
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Appendix B. Expansion of the cosine function inq-Hermite polynomials

Here we show how to rewrite [2(1 + cosθ)]N as a sum ofq-Hermite polynomials〈θ |n〉. First
of all we simplify the task by using an identity easily verified by induction:

[2(1 + cosθ)]N =
N∑
n=0

(
2N

N − n
)
cn(θ) (B.1)

with

cn(θ) =
{

1 n = 0

2 cos(nθ) n > 0.
(B.2)

We now need only to consider the expansion ofcn(θ). It is fairly easy to convince oneself
by inspecting (A.6) that only thoseq-Hermite polynomials of the same parity as the cosine
functioncn will appear in the expansion. Also we do not expect any contributions from〈θ |k〉
with k > n. This leads to the following prescription:

cn(θ) =
b n2 c∑
k=0

an,k〈θ |n− 2k〉. (B.3)

A formula foran,k may be found by applying the orthogonality property of theq-Hermite
polynomials (29). We obtain a familiar integral transform

an,k =
∫ π

0
dθ ν(θ)cn(θ)〈n− 2k|θ〉. (B.4)

To evaluate this integral we need the series expansion of the weight functionν(θ)

ν(θ) = 1

2π

∞∑
s=−∞

(−)sq(s2) (1 +qs
)

e2isθ = 1

2π

∞∑
s=−∞

bse
2isθ . (B.5)

Inserting this and the explicit formula for theq-Hermite polynomial (A.6) into the above we
find, after some manipulation,

an,k = 1√
(q; q)n−2k

∞∑
s=−∞

bs

n−2k∑
r=0

[
n− 2k
r

]
q

1

2π

∫ 2π

0
dθ cos((k + r − s)θ). (B.6)

The integral that appears in this equation is just a representation of the Kronecker delta
symbolδs,k+r . Thus we can eliminate the summation overs:

an,k = (−1)k√
(q; q)n−2k

n−2k∑
r=0

[
n− 2k
r

]
q

(−1)rq(
k+r
2 )(1 +qk+r )

= (−1)kq(
k

2)√
(q; q)n−2k

n−2k∑
r=0

[
n− 2k
r

]
q

(−1)rq(
r

2)+kr (1 +qk+r )

= (−1)kq(
k

2)√
(q; q)n−2k

((qk; q)n−2k + qk(qk+1; q)n−2k). (B.7)

To do the last step, we have made used the following series expansion inx:

(x; q)n =
n∑
k=0

[
n

k

]
q

(−1)kq(
k

2)xk. (B.8)

The latest expression allows a little simplification by noting that

(aqk; q)n−2k = (a; q)n−k
(a; q)k (B.9)
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and so we find we find

an,k = (−1)k
√
(q; q)n−2kq

(k2)

([
n− k − 1
k − 1

]
q

+ qk
[
n− k
k

]
q

)
(B.10)

which is true for alln, k if we observe the usual convention that
[
n

k

]
q
= 0 whenk < 0 ork > n.

We may now combine equations (B.1), (B.3) and (B.10) to find

[2(1 + cosθ)]N =
N∑
n=0

(
2N

N − n
) b n2 c∑
k=0

an,k〈θ |n− 2k〉

=
N∑
n=0

b N−n2 c∑
k=0

(
2N

N − (n + 2k)

)
an+2k,k〈θ |n〉

=
N∑
n=0

RN,n(q)
√
(q; q)n〈θ |n〉 (B.11)

thus completing the derivation of equation (52). The problem of expanding of a general
function inq-Hermite polynomials was first solved by Rogers in 1894. His approach, detailed
by [47], is more complicated than ours as he did not use the orthogonality properties of the
q-Hermite polynomials.

Appendix C. Approximation of the normalization for large N and q > 1

We indicate here how to estimateZN as given by (57) in a systematic manner whenN is
large andq > 1. We begin with the functionBn(v,w; q) which is defined by the sum in
equation (49). The dominant terms are those aroundk = n/2, and so we may replace the
q-binomial with the approximation (69) and also rewrite the sum as an integral overk. This
gives for largen

Bn(v,w; q) ∼ (−1)nA(v,w; q)q 1
4n

2|vw| 12n (C.1)

whereA(v,w; q) is given by (71).
We now consider the sum (53) forRN,n. In this summation we keep only the term with

largestk as the others are exponentially suppressed. We find then that

ZN ' (q−1vw; q−1)∞
(1− q)N (SN(v,w; q) + 2NSN−1(v,w; q)) (C.2)

where we have expanded the product〈W |V 〉 using the identity
∞∑
r=0

(qx)r

(q; q)r = (x; q
−1)∞ (C.3)

which holds whenq > 1 and for allx and where we have defined

SN(v,w; q) = (1− qN)
b N2 c∑
r=0

(−1)rq(
r

2)
(q; q)N−r−1

(q; q)r(q; q)N−2r
BN−2r (v, w; q). (C.4)

The main contribution to this latest sumSN(v,w; q) is where r is small. The
approximation

(−1)rq(
r

2)
(q; q)N−r−1

(q; q)r(q; q)N−2r
' −q

−r2+(N+1)r−N

(q; q)r (C.5)



Exact solution of a partially asymmetric exclusion model 2331

which follows from (66) and (68) is valid in that region and when combined with the asymptotic
expression forBn(v,w; q) yields

SN(v,w; q) ∼ (−1)NA(v,w; q)(1− q−N)|vw| 12Nq 1
4N

2
b N2 c∑
r=0

1

(q; q)r
( q
vw

)r
. (C.6)

We are now left with a single summation which may be estimated from the identity (C.3). We
see

b N2 c∑
r=0

1

(q; q)r
( q
vw

)r
= (1/vw; q−1)∞ +O(q−

1
4N

2
) (C.7)

and so to leading order inq we find

SN(v,w; q) ∼ (−1)NA(v,w; q)(1/vw; q−1)∞|vw| 12Nq 1
4N

2
. (C.8)

Noting that SN−1 is exponentially smaller thanSN we may finally write down the
asymptotic form ofZN whenq > 1

ZN ∼ A(v,w; q)(q−1vw, 1/vw; q−1)∞

(√
vw

q − 1

)N
q

1
4N

2
(C.9)

which is the expression presented in section 6.2.
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